Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction
نویسندگان
چکیده
The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.
منابع مشابه
Nanobubble “Snapshot” on a Polymer Matrix
The nanometer size of gaseous nanobubbles formed in liquids and their physical properties impose limitations to the selection of imaging techniques. The prospectiveex situ imaging method is developed to utilize imprints, which nanobubbles form on immersed polymer surfaces. Polymer nanopattern represent a “snap-shot” record of the nanobubble existence, which can be imagedex post byex situ AFM. T...
متن کاملA dynamic model of the jump-to phenomenon during AFM analysis.
The measurement of the physical properties of surfaces on the nanoscale is a long-standing problem, and the atomic force microscope (AFM) has enabled the investigation of surface energies and mechanical properties over a range of length scales. The ability to measure these properties for softer materials presents a challenge when interpreting data obtained from such measurements, in particular ...
متن کاملPractical method to limit tip-sample contact stress and prevent wear in amplitude modulation atomic force microscopy.
Amplitude modulation atomic force microscopy (AM-AFM) is one of the most popular AFM modes because of the reduced tip-sample interaction, compared to contact mode AFM, and the ability to acquire high-resolution images while interrogating the sample's material composition through phase imaging. Despite the reduced tip-sample interaction, tip and sample wear can occur through gradual atomic scale...
متن کاملHydrodynamic effects of the tip movement on surface nanobubbles: a combined tapping mode, lift mode and force volume mode AFM study.
We report on an Atomic Force Microscopy (AFM) study of AFM tip-nanobubble interactions in experiments conducted on argon surface nanobubbles on HOPG (highly oriented pyrolytic graphite) in water in tapping mode, lift mode and Force Volume (FV) mode AFM. By subsequent data acquisition on the same nanobubbles in these three different AFM modes, we could directly compare the effect of different ti...
متن کاملMethod for characterizing nanoscale wear of atomic force microscope tips.
Atomic force microscopy (AFM) is a powerful tool for studying tribology (adhesion, friction, and lubrication) at the nanoscale and is emerging as a critical tool for nanomanufacturing. However, nanoscale wear is a key limitation of conventional AFM probes that are made of silicon and silicon nitride (SiNx). Here we present a method for systematically quantifying tip wear, which consists of sequ...
متن کامل